Sunday, November 29, 2020

Ender 3 and the Black-and-White Dog

In the past, I was proud enough to fabricate every little piece of hardware from either plastic, metal of wood, with traditional tools. It's 2020 now, so the decision was made to modernize my tinkering and add 3D-printing to the arsenal.

My Black Friday choice of purchase was a Creality Ender 3. Mainly for the reason hat it is so widely spread. 

The printer came semi-assembled and was easy to put together. There are some very good tutorials how to do that on YouTube. I followed one by "3D Printing Canada", which explains the alignment and bed-leveling very well.
For all you experts out there, the model I got is version 1.1.6.2 with a Melzi board.

before assembly

The printer came with a small roll of white filament. With the printer all being setup and aligned, I dcided to print the dog for which a gcode file is supplied with the printer. The dog took 3h 01m 46s to print. In the process, the printer ran out of the white filament. In principle a very good thing, so I could practice changing filament in mid-print on a object of low importance. That of course created the black and white dog, as referenced in the title of this post.

the black and white dog
Note the little white lock which came from the remainder of the white filament in the extruder chamber.
After having changed the filament, still 2 or so layers of white came out, perfectly aligned with the first part of the print. However, the first black layer is slightly shifted in the Y-axis. Could that be due to the different filament? It is still PLA... 

By now I printed several essential improvements found on thingiverse. The STL-files of those parts were slized by Sliz3r on a Raspberry Pi 400. 
The first one came out a bit rough, but usable. For nozzle temperature for this print was set to 185C. The dog was printed at 200C and came out fine. So, for the next few parts, I created gcode files for a nozzle temperature of 200C and a bed temperature of of 60C.

As a design software for my own projects, I found that solvespace would serve my needs perfectly. The program is available from the Raspberry Pi OS repositories and work fine OOB. Solvespace is similar to many other CAD programs.

This is my first attempt of becoming less of a dinosaur, however, I am not sure about this yet. With a decently equipped workshop, with materials at hand, making a part from a block of metal or plastic appears to be much less time consuming. Not only do I not have to use a computer to design the piece, I also do not have to wait until the printer is done. Even worse, one has to babysit the printer, just in case something goes wrong. Further, if the printed part is not perfect, there is very little one can do to improve the part. When working with a lump of metal, I tend to make the part just a tiny little bit bigger here and there and use a file, the one from the toolbox, not the one sitting in your computer, and adjust to the proper dimensions manually. 
Well, his is my first day playing with 3D-printing, however, I already feel the disadvantages.
To be honest, there is an advantage to CAD and 3D-printing, which is huge. Once a part is successfully made, it is easily shareable with others. With hand-made parts, this might be different, in particular when a single piece is made in some sort of workshop.
Concerning ham radio, one might think of driven element holders for Yagi-Uda-arrays or base plates for a variable capacitor, printed in ABS.

So, in conclusion, I look forward to becoming more efficient with 3D-printing over time. For now, there is a learning curve ahead, which might slow down my projects by some good amount of time.